Ads Here

Translate

Friday, December 27, 2019

" How to Easily Add or Subtract Fractions"



 EVALUATING FRACTIONS
    Two or more fractions can evaluated by addition, subtraction, multiplication, division or a combination of two or more  of the above operations. Fractions often appear easy to evaluate from first sight but a careful attention often indicate the contrary. This was revealed by a survey I carried out in a college form two class some two months back. Most of the students acknowledged that fractions are very easy to evaluate but were not able to explain why some still got some of the exercises wrong. This is one of the reasons why I have decided to treat fractions and many other topics in Number Theory here.
This means before solving any fraction, it must be well understood in order to apply the correct method. Some students give wrong solutions to questions involving fractions because they often assume that it is easy hence begin solving without interpreting the question.
     In this write-up, you will learn how to add, subtract, multiply, divide fractions that: have the same denominators, have different denominators, contain mixed fractions. You will be given a detail guide on what to do concerning the evaluation of the different fractions above. Each explanation ends with some practice exercises for you to solve and evaluate our level of understanding. There will also be short VIDEOS to explain some of the exercises. This is to ensure the concepts are well understood. You can make request for further explanation if a concept is not understood. Use the comment section for this.
  Without any waste of time, let us get into business right away. Follow the explanations with attention and post your questions in the comments sections of this blog and be patient for your answer.
A)     ADDING OR SUBTRACTING PROPER AND IMPROPER FRACTIONS.
A proper fraction is one in which the numerator is less that the denominator example    5 .
                                                                                                                                  7
                                                                                                                                              
 An improper fraction is one in which the numerator is greater than the denominator. For example,  11
                                                                                                                                                      3
. A mixed fraction is made up of a whole number and a fraction. Example    5 2  .
                                                                                                                                                               3 

To add or subtract fractions, check if the denominators are same or different. If they are same, add or subtract ONLY the numerators and maintain the denominator.
EXAMPLE 1: Evaluate each of the following simplifying your result as far as possible
i)                    1 +  3    
   2     2
ii)                   4 +  2
   7     7
iii)                 5 3
  8      8
iv)                 7   4
   11   11
SOLUTION
      To simplify your answer means you write it to a level where it can no longer be worked on.
i)                    1 + 3 =?   ( add only the numerators)
2    2
1 + 3 = (1+3)
 2   2        2
1 + 3 = 4
 2   2    2
1 + 3 = 2 Ans.
2    2
ii)                   4  +  2  =? ( add only numerators)
  7          7 

                     4  +  2  = (4+2)
                      7      7        7

4 +    2 =   6
7           7      7  answer

                       5   _ 3 =?  ( subtract only numerators)
                       8      8
   5  _ 3  =    (5-3)
                     8     8           8
                       5 -   3  =  2
                       8      8      8
                       5 -   3  =   1
                       8      8       4 answer.   
                                                                                                                                                                                                                                                                    
7 -  4 = ?  (Subtract only numerators)
11  11
7 -   4 = (7-4)
                  11   11      11   
7  -   4   =  3
11    11    11 answer

EXERCISE FOR PRACTICE
Evaluate each of the following simplifying your answer as far as possible.
i)                    4  +  3        ii)  5 + 4      iii)    8  -    5       iv)   14 -   6   .
              11   11   ,         9    9   ,            13    13  ,           17    17  
                   ANSWERS.
                     i)     7  .    ii)  1.  iii)  3  .   iv)    8 .
           11                      13            17

B)      If the denominators are different, use their LOWEST COMMON MULTIPLE to simplify them. The lowest common multiple denoted LCM is the product of the denominators present.   
EXAMPLE:   Evaluate each of the following fractions simplifying your result as far as possible.
i)                    1 + 2     ii)   4   + 3     iii)   8 1  iv)  5 -2
   3    5            7      2           11   2         9  3

              SOLUTION
The denominators of each of the fractions above are different. Use the lowest common multiple of each to evaluate it.
i)                    1 + 2 =  ?+ ?    ( Where (3)(5) is the lowest common multiple)
   3    5     (3)(5)
Divide the lowest common multiple (LCM) by each of the denominators and multiply your result by the corresponding numerator.
 That is, (3)(5)÷3 =5. Multiply 5 by 1 which is the numerator of the fraction 1 to give 5(1).
                                                                                                                   3
 Similarly, (3)(5)÷5=3. Multiply 3 by 2 the numerator of the fraction 2 to give 3(2).
                                                                                                                        5
Substituting 5(1) and 3(2) respectively in place of”?” On the right hand side of (i) above gives;
1 + 2 = 5(1) + 3(2)
3     5      (3)(5)
1 + 2 =    5 + 6
3    5       (3)(5)

1 + 2 =    11
                      3    5       15 answer.
ii)                   4 + 3 =   ? + ?  ( where (7)(2) is the LCM )
   7    2     (7)(2)
Divide the lowest common multiple (LCM) by each of the denominators and multiply your result by the corresponding numerator.
That is, (7)(2) ÷7=2 . Multiply 2 by 4 the numerator of the fraction 4 to obtain 2(4).
                                                                                                                       7
                                  
Similarly, (7)(2) ÷2=7. Multiply 7 by 3 the numerator of the fraction 3 to obtain 7(3).
                                                                                                                          2
Substituting 2(4) and 7(3) respectively in place of “?” on the right hand side of (ii) above gives;
4 + 3 =   2(4) +7(3)
7    2        (7)(2)
4 + 3 =     8 + 21
7    2            14
  4 + 3 = 29
                        7    2    14.

iii)                 8 -   1 =   ? +?
   11   2     (11)(2)
As above,
(11)(2) ÷11 =2. Multiply 2 by 8 the numerator of the fraction 8   to obtain (2)(8).
                                                                                                             11
(11)(2) ÷2 = 11. Multiply 11 by 1 the numerator of the fraction 1 to obtain (11)(1).
                                                                                                                 2
Substituting the products (2)(8) and (11)(1) in place of “?” on the right hand side of (iii) above gives;
 8  -  1  = (2)(8) - (11)(1)
11     2        ( 11)(2)
 8  -  1  =    16 -11
11    2            22
                        8   - 1  =   5  
 11     2      22                           
iv)                 5  - 2  =   ? + ?
   9    3       (9)(3)
As  above ;
(9)(3) ÷9 = 3. Multiply 3 by 5 the numerator of the fraction 5 to obtain (3)(5).
                                                                                           9
 (9)(3)÷3=9. Multiply 9 by 2 the numerator of the fraction 2 to obtain (9)(2).
                                                                                         3
Replacing “?” in iv above by (3)(5) and (9)(2)  respectively gives;
5  - 2 = (3)(5) - (9)(2)
9     3           (9)(3)
5 2   =  15 - 18
9    3           27
                           52  =   -3  = -1
     9    3       27       9   answer.
          
 EXERCISE FOR PRACTICE
   Evaluate each of the following simplifying your results as far as possible.
i)                    3 +  1    (ii)  3 + 4    (iii)  2 -  4   (iv) 3 - 8
   5     4           4    5           3    5           7   9

Answers:  i) 17     ii)   19 iii) -2    iv -13
                      20          20        15         35

                                          EVALUATING MIXED FRACTIONS
A mixed fraction is any fraction that is made up of a whole number and a fraction. For example   4 2 
     3   
Where    4 is the whole number and    2    is the fraction.
                                                          3
To add or subtract mixed fractions, convert the mixed fraction into an improper fraction and proceed as in the exercises treated so far. If the denominators are the same, convert the mixed fraction into an improper fraction and add or subtract  ONLY the numerators and maintain the denominator.

EXAMPLE 1: Evaluate and simplify each of the following simplifying your answer as far as possible.
i)                    31  +   41       ii)    4  2    -  51
         2                2                                 3                3  

Solution
i)                     31  +  41   (convert each fraction to an improper fraction and simplify)
                         2             2
              To convert a mixed fraction to an improper fraction, add the numerator to the product of the whole number and denominator and maintain the denominator.
                              
                 31  + 41  = 1+ (3×2)   +  1+ (4×2)
                        2           2              2                 2

       31  +  41   =  1 + 6   +  1 + 8
                      2             2            2            2

       31  + 41   = 7  +  9    ( add only numerators)
                       2           2               2      2

       31  + 41  =  2+9
                      2            2              2

      31  +   41 =  11
                    2               2          2
     31  +    41   =   51   Answer.
                 2              2                      2               

ii)                   42    -   51  (convert to improper fraction and simplify).
      3             3
                    42  - 51   =  2+ ( 4×3)   --  1+( 5×3)
                                 3          3                        3                        3

                           42   --  51  =     2+ 12    --  1+  15
                                 3             3                 3                3


           42  --  51   =      14   -   16
                                3             3                    3
                         42  --   51    =     -2 Answer.
                              3             3                  3          
 If the mixed fractions have different denominators, convert to improper fractions and look for the LCM of the fractions .Proceed as above.

     Example 2: Evaluate each of the following simplifying your result as far as possible.
i)                           31  + 42                ii)   4251 
                                          2         3                          3          2     
                               
                                       Solution
i)                       31  + 42     ( Convert to improper fractions and simplify)
                       2            3
        31 + 42  =   1 +( 3×2)   +  2 +(4× 3)
                        2         3               2                        3

       31  + 42  =  1+6    +     2+ 12
                      2         3       2                3

       31  +  42   =     7   +   14   =    ?  + ?
                      2           3         2         3         (2)(3)
               3 1  +    4 2       = 7     + 14 = 3(7) + 2(14) 
                     2               3         2          3         (2)(3)
       31 +  42  = 21  + 28
              2           3           6

   31 + 42     =   49        or     41
            2          3           6                    6     Answer.

ii)                    73  -- 21    ( Convert to improper fractions)
                      4           5
        73  --  21      =  3+ (7×4)    --   1+ ( 2×5)
                        4            5               4                        5

                     73  --  21    =   3+ 28   --    1+10
                          4             5            4                 5
        73 ---  2 1   =    31     --   11   =    ? -- ?
                        4              5           4              5         ( 4)(5)

                   7 3    --   21     =    31(5)  --  11(4)
                         4              5                      20
                         73  -- 21   =   155—44
                    4               5                 20
             73  -  2 1      =   111     OR   511
                   4            5            20                 20   Answer.

                 EXERCISE FOR PRACTICE
Evaluate each of the following, simplifying your answer as far as possible.
i)                     31 +  2 1           ii)   31  +  23     (iii)   22  --- 11  .     Answers:  i)  6 , ii)  14  ,    iii)  9
         2          2                      2            5                  3               5                                              15         10

No comments:

Post a Comment