Ads Here

Translate

Wednesday, January 1, 2020

"An Easy Lesson on How to Multiply or Divide Fractions "



                    MULTIPLYING AND DIVIDING FRACTIONS WITHOUT TEARS
Two or more fractions can evaluated by addition, subtraction, multiplication, division or a combination of two or more  of the above operations.
      Fractions often appear easy to evaluate from first sight but a careful attention often indicate the contrary. This was revealed by a survey I carried out in a college form two class some two months back. Most of the students acknowledged that fractions are very easy to evaluate but were not able to explain why some still got some of the exercises wrong. 
     This is one of the reasons why I have decided to treat fractions and many other topics in Number Theory here.
     This means before solving any fraction, it must be well understood in order to apply the correct method. Some students give wrong solutions to questions involving fractions because they often assume that it is easy hence begin solving without interpreting the question.
     In this write-up, you will learn how to multiply, and divide fractions that: have the same denominators, have different denominators, contain mixed fractions.
        You will be given a detail guide on what to do on how to simplify  different fractions. Each explanation ends with some practice exercises for you to solve and evaluate your level of understanding. 
       There will also be short VIDEOS to explain some of the exercises. This is to ensure that the concepts are well understood. You can make request for further explanation if a concept is not understood. Use the comment section for this.
  Without any waste of time, let us get into business right away. Follow the explanations with attention and post your questions in the comments sections of this blog and be patient for your answer.

       MULTIPLICATION OF FRACTIONS
      To multiply fractions the numerators are multiplied separately from the denominators. What I mean is that the denominator is multiplied together and the numerators multiplied together.
        EXAMPLE 1 : Evaluate the following fractions simplifying your results as far as possible.
i)                    2 × 1    ii)  3  × 4    iii)  2 × 4    iv) 6 × 1
3    3          5     5          3    11       7     8

                                       Solution
i)                 2  × 1 =  2×1
3      3     3×3
                  2 × 1  = 2
 3    3     9  answer.
ii)               3 × 4 = 3 × 4
 5     5    5×5
3 × 4 = 12
                 5    5     25 answer.
iii)                2 × 4 =  2×4
                     3 11    3×11
                     2 × 4  =   8
                     3   11     33 answer.
iv)            6  × 1  =  6×1
7     8      7×8
                 6 × 1   =   6
7    8       56
6  × 1   =  3
7     8      28 answer.
MULTIPLICATION OF MIXED FRACTIONS
 To multiply mixed fractions, convert first to improper fractions and solve as above.
  EXAMPLE 2: Evaluate and simplify the following.
i)                    22  × 11          ii)  31  × 23      iii)    53 × 11  
                           3            5                    2           5                  7          4
                                  SOLUTION
i)                    22  × 11   (convert to improper fractions and solve as above.)
                    3            5
                  22  ×  11  = 2+ (2×3)   ×     1+(1×5)
                       3            5              3                        5
       
                22   × 11    =   2 +6    ×    1+5       
  3           5            3               5

       22 ×  11  =    8  ×  6
                      3         5           3      5

      22 × 11  =      48      or    33   or    31
                   3         5             15                 15              5   . Answer
ii)                  31 × 23   ( convert  to improper fraction)
     2           5

31  × 23   = 1+ ( 3×2)   ×  3+( 2× 5)
                          2           5              2                       5
             
                    31 × 23    =  1+6   ×  3+10
                          2          5          2             5
                                             =   7   ×  13
                                                  2        5
                                             =  7×13
 2×5
         31 ×  23  =   91    0r   91
                           2            5       10               10

            EXERCISE FOR PRACTICE
i)                       53 × 11       ii)    21 ×  41       iii)   41  × 21      iv)  51 × 21
          7          4                   3           2                   2          4                7          9
    ANSWERS
i)                    3   ii)  63   iii)  81   iv 1054
                               6                8                       63

       DIVISION OF FRACTIONS
To divide two fractions, invert the divisor and change the operation from division to multiplication. Proceed as though it was multiplication as done above.
EXAMPLE 1: Evaluate each of the following simplifying your result as far as possible.
i)                    1 ÷ 4     ii)   5 ÷ 1     ii)  3  ÷ 2   iv)   6 ÷ 1
     3    5             6     2            4      3           7    8

                Solution
i)                    1  ÷  4  ( invert the divisor and change operation to multiplication)
   3      5
1 ÷ 4   =   1 × 5
3    5        3      4
1 ÷ 4   =   5
                  3    5       12

ii)                  5  ÷ 1  = 5 × 2
   6     2     6    1
5  ÷ 1  =  10 or  5 or 12
6     2       6        3         3
   
iii)                3  ÷ 2  = 3  ×  3
   4     3     4      2

3   ÷ 2 = 9 or   3
                  4      3   12       4
iv)                6  ÷ 1 = 6 ×8
  7     8    7    1
6  ÷ 1 =   48  or  66
 7    8        7            7
EXERCISE FOR PRACTICE
Evaluate and simplify each of the following
i)                    3 ÷ 2  ii)  3 ÷ 5    iii) 3 ÷  11
   8    9      10    9         4     12

      DIVISION OF MIXED FRACTIONS
To divide mixed fractions, convert all to improper fractions, invert the divisor then change the operation from division to multiplication.
Example 1: Evaluate and simplify each of the following
i)                     33  ÷ 21  ,  ii)   23 ÷ 15  ,  iii)   31 ÷ 23  .
       4            2                4        11                  2          5

                  Solution
i)                     33 ÷21  ( convert to improper fractions)
                          4         2
        33  ÷ 21 =  3+(3×4)  ÷ 1+( 2×2)
                         4           2             4                       2

                33  ÷ 21  =   3 + 12      ÷   1+4
                      4          2           4               2
                  33  ÷ 21  =      15   ÷   5  (invert the divisor and change operation to multiplication)
                                                  4           2            4          2
                                                                     =     15  ×    2
                                                                               4        5
                  33  ÷ 21   =   30   or  6  or  11
                                               4           2            20       5            5  answer
ii)                    23  ÷ 15   ( convert to improper fractions)
        4          11
23  ÷ 15   =   3+ (2×4)   ÷   5+( 1×11)
     4           11               4                      11
 23 ÷  15 =   3 + 8   ÷  5+11
        4          11        4             11
    23  ÷15   =  11  ÷   16
         4          11        4          11
                             =  11 ×  11
                                  4       16
23  ÷    15       =  121
      4           11            64  . answer

iii)                  31 ÷  23  = 1+( 3×2)  ÷  3+( 2×5)
      2          5             2                     5

31  ÷ 23  =  1+6     ÷   3+10
      2           5          2               5

                         = 7   ÷ 13
                            2        5
                        =  7    ×  5
                            2       13
31  ÷ 23  =   35   or  1 9
      2          5        26               26  answer


EXERCISE FOR PRACTICE
Evaluate and simplify each of the following.
i)                 22  ÷ 41      ii)   51  ÷ 21    iii)  35 ÷ 52    iv)   62 ÷ 41
      3          2                   7           9                7         3                 5         4

ANSWERS   i) 16  ,   ii)  324   ,   iii)  324   ,   iv)  143
                          27            133              133                   85
 To simplify fractions involving many operations, apply BODMAS and move step by step. In applying BODMAS start from “B” and end with “S”.  Note the following: 
B= brackets; evaluate fractions in brackets first.
O = “of” means multiplication
 D= divide
M= Multiply
A= Add
S= Subtract.
The operations are performed starting from “B” and ending with “S”.

Example1: Evaluate the following and simplify your result as far as possible
i)                     ( 4  - 1) ÷ 2 , ii) (  3 + 1) × 5   iii)  (3221) × 1 1    iv)  (21 + 13 ) ÷ 32
        7      3          5                 5        3         7                      3          2                7                    2         4              5                            
  

Solution
i)                    (4  - 1 ) ÷ 2  ( using BODMAS evaluate the fractions in the brackets first)
  7    3      5
(41) ÷  2 = 3(4)-7(1) ÷  2
  7    3      5       (7)(3)        5
                     = 12 – 7  ÷ 2
                                               21     5
                                          =    5 × 5
                                               21   2
                    ( 4- 1 ) ÷ 2   =   25
                      7   3       5        42 answer.
ii)                  14  , iii) 35 .
   75         42

No comments:

Post a Comment