Ads Here

Translate

Thursday, April 23, 2020

"Easy Guide to Easily Understand Percentages"



                                                       PERCENTAGES

     Widely used in the educational, economic, social and political activities. Schools use it to evaluate students’ performance, businesses use it to check sales as well make discounts, and politicians use it get electoral results. . Percentages are the plural form while percent is the singular form.
    Definition. Percent means “per hundred” or hundredths. The word “cent” comes from the Latin centum, meaning hundred. Hence a hundred years is called a century.  ‘Per hundred’ means out of one hundred.  In daily conversations we talk about percentages meaning the above.
 The mathematical symbol for percent is %.  ’15 percent’ is written as 15% meaning 15 out of 100.
A  PERCENTAGE IS A WHOLE OF A FRACTION.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.





















































































From the diagram above, 15 blocks are shaded. It means 15% ( 15 percent ) of the blocks are shaded. The 15% can be written as a fraction and as decimal.
Ø  As fraction : 15/100
Ø  As decimal:  0.15.
CONVERTING FRACTIONS TO PERCENTAGES
  As seen above, a percentage is a fraction with denominator 100. Therefore to convert any fraction to a percentage, use any of the following methods:
1)      Convert given fraction to an equivalent fraction with a denominator of 100.
2)      Multiply the fraction given by 100/1.
3)      Change given fraction to decimal and multiply by 100/1 then attach % to your result.
EXAMPLE 1.
Convert     2   to a percentage.
                  5
METHOD 1- Convert given fraction to an equivalent fraction with a denominator of 100
   Solution
2 =   x
 5   100
  Since the denominator 5 of the given fraction is multiplied by the 20 to give 100 the denominator of the equivalent fraction, multiply the numerator of the given fraction by 20. That is 2× 20=40.
  2 = 40  .    Therefore,   2 = 40% answer.
  5    100                        5
   The question here is how did we get 20? Answer:  Divide the denominator of the equivalent fraction by that of the given fraction. (100÷5=20). Now you multiply the denominator of the given fraction by 20 to the numerator of the expected equivalent fraction.
METHOD 2- Multiply the given fraction by   100.
                                                                              1

Solution.
2  = 2 × 100 %
5     5      1
2 =  40%
5
METHOD 3- Change fraction to decimal and multiply by 100 %
                                                                                                   1
2 = 0.4
5
2 = 0.4× 100 %
5               1
2 = 40%   answer.
5

EXERCISE 1 . Change the following fractions as percentages using any of the methods above.
i)                     40 ,    ii)    19 ,  iii)  17 ,   iv)     8   
100           100         50            25

SOLUTION
i)                    40 = 40% ,   ii)   19  = 19%,  iii) 17= 34 = 34%, iv)  8  = 32 =32% .
100                    100                  50  100                  25   100
EXERCISE 2-Express these percentages as fractions, simplifying each answer to its lowest term.
i)                    10%,  ii) 16% , iii) 25% , iv) 56%, v) 33% vi) .75% , vii) 190%
SOLUTION
i)                    10%=  10 = 1  ,  ii) 16% =    16 =    4  , iii) 25% =  25 =   1 ,  iv)    56% =  56  =  13 ,                       100   10                      100     25                    100   4                         100     4      .  

EXERCISE 3-Convert the following decimals into percentages
a)      0.25 ,   b) .04 , c) .831, d) .6734
         SOLUTION
a)      .25= .25× 100= 25%, b) .04= .04×100= 40%, c) .831= .831×100=83.1%, d) .6734=.6734×100= 67.34%
EXERCISE 4- Write these percentages as decimals.
i)                    8% , ii) 19%, iii) 72%, iv 0.5% , v) 0.7%.
SOLUTION
i)                    8%=   8   = .08 ,  ii) 19%= 19  = 0.19 , iii) 72%= 72 = 0.72 , iv) 0.5% = 0.5 = 0.005, v) 0.7%=            100                           100                            100                              100














































































































   EXERCISE 5- Consider the diagram below;








       a)      How many small blocks make up
100% 0f this diagram?
       b)      Write 100% as a fraction.
c)       Write 100% as a decimal.
d)      Is 100% the same as: i) 1 whole? , ii) 10 wholes?, iii) 100 wholes?
e)      What percentage is the same as 5 wholes?
f)       What percentage is the same as 50 wholes?
SOLUTION
a)      100, b) 100 ,  c) 1.00,  d) i. Yes, ii. Yes , iii) Yes , e)  100%, f) 100%
                  100

                         COMPARING FRACTIONS, DECIMALS AND PERCENTAGES.
To compare fractions, decimals and percentages, write them in the same form- either as fractions, as decimals or as percentages.
EXAMPLE 1.  Arrange   1 , 0.4, 60% in increasing order.
                                        2
               SOLUTION
a)      If we write all of them as percentages:
1  = 50%,  0.4 = 40%, 60%= 60%
2
Arranging the numbers in increasing order gives 40%, 50% and 60%, hence 0.4, 1 , 60%
                                                                                                                          2
b)      If we write the numbers as fractions with a common denominator:
1= 50 
2   100
0.4= 40
        100
60%=  60
          100
                          Arranging the numbers in increasing order gives    40 ,  50 ,   60 ,
                                                                                                            100  100   100
Hence  0.4, 1 60% in increasing order.
                   2
                      
c)       If we write all of the as decimals:
1 = 0.5
2
0.4 =0.4
60% =  60 = 0.6
            100
Arranging in increasing order gives 0.4, 0.5, and 0.6, hence, 0.4, 1,   60%
                                                                                                  2
EXERCISE. 1 . Arrange each of the following group of numbers in ascending order;
i)                      3 , 30.76, 70% . ii) 0.87, 85%, 5  , iii) 25%,  1 , 0.23
              4                                              6                   5
SOLUTION
i)                      3  , 30.76 , 70%. Writing all as decimals give:
  4
70%= 0.7,  ¾=.75, 30.76=30.76. Arranging in increasing order gives 0.7, 0.75, and 30.76. Hence in increasing, it will  be 70%,  3 , 30.76
                                                       4
ii)                   .87, 85%, 5 . writing all as decimals give:
                  6
0.87 =0.87
85%=  85 =0.85
          100
5 = 0.83
6
From the decimals above, in increasing order gives   5 , 85%, 0.87
                                                                               6
iii)                 25% , 1 , 0.23 . Writing all as decimals give:
          5
25% = 25 =0.25
           100
1 =0.20
5
0.23= 0.23
From the decimals above , in increasing order gives  0.20, 0.23, 0.25 hence 1 , 0.23, 25%
                                                                                                                   5
NB. You have choice to write the numbers either as decimals, fractions or percentages before rearranging. Any direction will give you the correct result if properly applied.
EXERCISE 2- Arrange each of the following groups of numbers in descending order.
i)                     7 ,  12%, 0.38,  ii) .375, 37%,  2
20                                              5
SOLUTION
In descending order means moving down starting from the largest number to the smallest.
i)                    7 , 12%,  0.38 . write all as decimals
20
7 =0.35
20
12%= 12 = 0.12
          100
In descending order gives 0.38,  7 ,  12%
                                                 20




                                 






 



No comments:

Post a Comment