Purchase Ads Space Here.

Advertise With Us!

Get Your Brand Noticed.

Unlock your brand's potential! Advertise on "Using Algebra Today" and reach engaged math enthusiasts.

Starting at $275/month.

Available Ad Spaces:

  • Header Banner (728x90 pixels)
  • Sidebar Ad (300x250 pixels)
  • Footer Ad (728x90 pixels)

Contact Us for More Details

Advertise Here

Advertise Here
Get Noticed, Get Results!

Translate

Tuesday, June 6, 2023

"How to Solve the Equation 2(x+5)=3(x-1)"

  Let's solve the linear equation `2(x+5)=3(x-1)` together.


Introduction: A linear equation is an algebraic equation in which each term is either a constant or the product of a constant and a single variable. In this case, our equation is 

2(x+5)=3(x-1).


Body:To solve this equation, You need to isolate the variable `x` on one side of the equation and all the constants on the other side. 

 Start by distributing the `2` and `3` on both sides of the equation: `2(x+5)=3(x-1)` becomes

 `2x + 10 = 3x - 3`. Next, Subtract `2x` from both sides to isolate the variable: '

2x + 10 - 2x = 3x - 3 - 2x`, 

which simplifies to

 `10 = x - 3`. 

Finally, add `3` to both sides to solve for `x`: 

`10 + 3 = x - 3 + 3`, which gives us

 `x = 13`.


Another example: Let's try solving another linear equation together: '4(x-2) = 5(x+1)`. 

First, You'll distribute the `4` and `5` on both sides of the equation:

 `4(x-2) = 5(x+1)` 

becomes 

`4x - 8 = 5x + 5`. 

Next, Subtract `4x` from both sides to isolate the variable: `4x - 8 - 4x = 5x + 5 - 4x`, 

which simplifies to 

`-8 = x + 5`. 

Finally, Subtract `5` from both sides to solve for `x`: 

`-8 - 5 = x + 5 - 5`, which gives us 

`x = -13`.


Conclusion: Solving linear equations involves isolating the variable on one side of the equation and all the constants on the other side. We can do this by performing the same operations on both sides of the equation until we have solved for the variable.


Practice exercises: Here are three practice exercises for you to try:

1. Solve for x: `6(x+2) = 7(x-3)`

2. Solve for y: `-4(y+1) = -5(y-2)`

3. Solve for z: `(z+6)/3 = (z-7)/4`

This post was written by Awah Aweh who is an experience teacher of mathematics and writes content for the internet. 

 For more on linear equations, contact me at https://awahconnections.blogspot.com/ contact 

Solution to a linear Equation






No comments:

Post a Comment