Ads Here

Translate

Thursday, October 25, 2018

LESSON NOTES ON ALGEBRAIC FRACTIONS



LESSON NOTES ON SIMPLIFYING LINEAR ALGEBRAIC FRACTIONS
SUBJECT: Algebra
TOPIC    :  Algebraic Expressions
LESSON: Simplifying Algebraic Fractions
PREVIOUS KNOWLEDGE: Students are familiar with numerical fractions and can express them.
OBJECTIVES: By the end of the lesson, students should be able to express the sum or difference of two or more algebraic fraction into a single fraction.    
TEACHING METHODS: Demonstration, Questioning, and Assignment methods.
GRADE LEVEL: 7 ( Form 2)
DURATION: 40 minutes
DATE: 10/22/2018
INTRODUCTION: -What name is given to this number 2?
                                                                                        3
                               -Express i) 1+3 =?
                                                2 
                                               ii) 2-  4=?
                                                   3   5
                                               iii 4+1=?
                                                   7  3
                                                   
PRESENTATION:
An algebraic fraction is any fraction of the form, x + 5   where x and 5 are called the
                                                                        3.   x+2
  numerators; 3 and x+2 the denominators.                                      
  a) SIMPLIFYING ALGEBRAIC FRACTIONS.
To simplify an algebraic fraction, do the following:
-find the common denominator. This is usually the product of the denominators in the fractions present.
-adjust both fractions so that they are equivalent, using common denominator
-complete the simplification.
EXAMPLE( 1): Express i)x +  5
                                        3  (x+2) 
                                         ii) 2 +  1
                                             x.  (x+1)

                                SOLUTION
       x+      5
       3      x+2
 x(x+2)+3(5) =x2+2x+15
   3(x+2)            3(x+2)

Therefore, x +5         = x2 +2x+1
                3  (x+2)          3(x+2)        Answer.
EXAMPLE (2) Express each of the following as a single fraction simplifying your result as far as possible.                                 i)      2 + 3 
                                                      3    7
ii)    2x +1 + x-2    
           3          4

iii)  1 + x-2   
         2      3

  iv)    3  +   2    
          x-4  x+3
  v)  y+2  + 3-y
        y-5      y+3
v) 2m+13m-2
     m+5       m-4

vi) 6  -  3               
 x-4     x
                                                            SOLUTION

  i)2    + 3 
    3       7
  14 +9  = 23
   (3)(7)     21 answer.

ii)   2x+1  +  x-2
        3            4
4(2x+1) +   3(x-2)  =8x+4+3x-6
      (3)(4)                        (3)(4)
     2x+1 + x-2         =11x -2
        3           4              12      answer.

iii) 1 + x-2
      2     3
    3(1)+2(x-2) =3 +2x-4
        (2)(3)              6
  1 + x-2         = -1+2x
  2       4                  6          answer.

iv)       3    +   2
          (x-4)   (x+3)
      3(x+3) + 2(x-4) =3x+9+2x-8
           (x-4)(x+3)        (x-4)(x+3)
         
           3  +    2         =  5x+1
        (x-4)  (x+3)        (x-4)(x+3)
                                = 5x +1
                                   X2+ 3x-4x-12
                               = 5x+1
                                  X2-x-12 answer.
                      EVALUATION.

Express each of the following as single fraction:
i)                    2x+1 + 3x-2
  3         2
     ii)         x-4  +  3
                  x-5     x-1
   iii          3x-2 -  x-4
                x-2      x+3  

                  SUMMARY.
 -Find the lowest common multiple of the denominators ; which is the product of the denominators.
-To express algebraic fractions, multiply numerator by denominators just as in numerical fractions.
-Factorize the numerator or denominator of one or both fractions to ease simplification.

              CONCLUSION.
ASSIGNMENT: Express as far as possible each of the following fractions.
i)                    x + 3x+2
3      5
ii)                  n-4  +  3n-1
            n+5     n-1
iii)                2y+15                                                                                                                                  4         y+3




No comments:

Post a Comment