Purchase Ads Space Here.

Advertise With Us!

Get Your Brand Noticed.

Unlock your brand's potential! Advertise on "Using Algebra Today" and reach engaged math enthusiasts.

Starting at $275/month.

Available Ad Spaces:

  • Header Banner (728x90 pixels)
  • Sidebar Ad (300x250 pixels)
  • Footer Ad (728x90 pixels)

Contact Us for More Details

Advertise Here

Advertise Here
Get Noticed, Get Results!

Translate

Thursday, October 25, 2018

LESSON NOTES ON ALGEBRAIC FRACTIONS



LESSON NOTES ON SIMPLIFYING LINEAR ALGEBRAIC FRACTIONS
SUBJECT: Algebra
TOPIC    :  Algebraic Expressions
LESSON: Simplifying Algebraic Fractions
PREVIOUS KNOWLEDGE: Students are familiar with numerical fractions and can express them.
OBJECTIVES: By the end of the lesson, students should be able to express the sum or difference of two or more algebraic fraction into a single fraction.    
TEACHING METHODS: Demonstration, Questioning, and Assignment methods.
GRADE LEVEL: 7 ( Form 2)
DURATION: 40 minutes
DATE: 10/22/2018
INTRODUCTION: -What name is given to this number 2?
                                                                                        3
                               -Express i) 1+3 =?
                                                2 
                                               ii) 2-  4=?
                                                   3   5
                                               iii 4+1=?
                                                   7  3
                                                   
PRESENTATION:
An algebraic fraction is any fraction of the form, x + 5   where x and 5 are called the
                                                                        3.   x+2
  numerators; 3 and x+2 the denominators.                                      
  a) SIMPLIFYING ALGEBRAIC FRACTIONS.
To simplify an algebraic fraction, do the following:
-find the common denominator. This is usually the product of the denominators in the fractions present.
-adjust both fractions so that they are equivalent, using common denominator
-complete the simplification.
EXAMPLE( 1): Express i)x +  5
                                        3  (x+2) 
                                         ii) 2 +  1
                                             x.  (x+1)

                                SOLUTION
       x+      5
       3      x+2
 x(x+2)+3(5) =x2+2x+15
   3(x+2)            3(x+2)

Therefore, x +5         = x2 +2x+1
                3  (x+2)          3(x+2)        Answer.
EXAMPLE (2) Express each of the following as a single fraction simplifying your result as far as possible.                                 i)      2 + 3 
                                                      3    7
ii)    2x +1 + x-2    
           3          4

iii)  1 + x-2   
         2      3

  iv)    3  +   2    
          x-4  x+3
  v)  y+2  + 3-y
        y-5      y+3
v) 2m+1 – 3m-2
     m+5       m-4

vi) 6  -  3               
 x-4     x
                                                            SOLUTION

  i)2    + 3 
    3       7
  14 +9  = 23
   (3)(7)     21 answer.

ii)   2x+1  +  x-2
        3            4
4(2x+1) +   3(x-2)  =8x+4+3x-6
      (3)(4)                        (3)(4)
     2x+1 + x-2         =11x -2
        3           4              12      answer.

iii) 1 + x-2
      2     3
    3(1)+2(x-2) =3 +2x-4
        (2)(3)              6
  1 + x-2         = -1+2x
  2       4                  6          answer.

iv)       3    +   2
          (x-4)   (x+3)
      3(x+3) + 2(x-4) =3x+9+2x-8
           (x-4)(x+3)        (x-4)(x+3)
         
           3  +    2         =  5x+1
        (x-4)  (x+3)        (x-4)(x+3)
                                = 5x +1
                                   X2+ 3x-4x-12
                               = 5x+1
                                  X2-x-12 answer.
                      EVALUATION.

Express each of the following as single fraction:
i)                    2x+1 + 3x-2
  3         2
     ii)         x-4  +  3
                  x-5     x-1
   iii          3x-2 -  x-4
                x-2      x+3  

                  SUMMARY.
 -Find the lowest common multiple of the denominators ; which is the product of the denominators.
-To express algebraic fractions, multiply numerator by denominators just as in numerical fractions.
-Factorize the numerator or denominator of one or both fractions to ease simplification.

              CONCLUSION.
ASSIGNMENT: Express as far as possible each of the following fractions.
i)                    x + 3x+2
3      5
ii)                  n-4  +  3n-1
            n+5     n-1
iii)                2y+1 – 5                                                                                                                                  4         y+3




No comments:

Post a Comment